Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | \(-h_{4}+h_{1}\) | \(-h_{3}+h_{1}\) | \(g_{10}\) | \(g_{7}\) | \(g_{6}\) | \(g_{11}+g_{2}\) | \(g_{9}\) | \(g_{8}\) | \(g_{5}\) | \(g_{12}\) |
weight | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(0\) | \(2\omega_{1}-4\psi_{1}-4\psi_{2}\) | \(2\omega_{1}-4\psi_{2}\) | \(2\omega_{1}-4\psi_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+4\psi_{1}\) | \(2\omega_{1}+4\psi_{2}\) | \(2\omega_{1}+4\psi_{1}+4\psi_{2}\) | \(4\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\omega_{1}-4\psi_{1}-4\psi_{2}} \) → (2, -4, -4) | \(\displaystyle V_{2\omega_{1}-4\psi_{2}} \) → (2, 0, -4) | \(\displaystyle V_{2\omega_{1}-4\psi_{1}} \) → (2, -4, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}+4\psi_{1}} \) → (2, 4, 0) | \(\displaystyle V_{2\omega_{1}+4\psi_{2}} \) → (2, 0, 4) | \(\displaystyle V_{2\omega_{1}+4\psi_{1}+4\psi_{2}} \) → (2, 4, 4) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | ||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | ||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}-4\psi_{1}-4\psi_{2}\) \(-4\psi_{1}-4\psi_{2}\) \(-2\omega_{1}-4\psi_{1}-4\psi_{2}\) | \(2\omega_{1}-4\psi_{2}\) \(-4\psi_{2}\) \(-2\omega_{1}-4\psi_{2}\) | \(2\omega_{1}-4\psi_{1}\) \(-4\psi_{1}\) \(-2\omega_{1}-4\psi_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+4\psi_{1}\) \(4\psi_{1}\) \(-2\omega_{1}+4\psi_{1}\) | \(2\omega_{1}+4\psi_{2}\) \(4\psi_{2}\) \(-2\omega_{1}+4\psi_{2}\) | \(2\omega_{1}+4\psi_{1}+4\psi_{2}\) \(4\psi_{1}+4\psi_{2}\) \(-2\omega_{1}+4\psi_{1}+4\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{1}-4\psi_{2}}\oplus M_{-4\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{2}}\oplus M_{-4\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{1}}\oplus M_{-4\psi_{1}}\oplus M_{-2\omega_{1}-4\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{1}}\oplus M_{4\psi_{1}}\oplus M_{-2\omega_{1}+4\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{2}}\oplus M_{4\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{1}+4\psi_{2}}\oplus M_{4\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{1}-4\psi_{2}}\oplus M_{-4\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{2}}\oplus M_{-4\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{1}}\oplus M_{-4\psi_{1}}\oplus M_{-2\omega_{1}-4\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{1}}\oplus M_{4\psi_{1}}\oplus M_{-2\omega_{1}+4\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{2}}\oplus M_{4\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{1}+4\psi_{2}}\oplus M_{4\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) |
2\\ |